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I. Introduction

At certain stages of the flight a missile structure is exposed to
intense jet noise. The thin walled tanks of a missile are pressur-
ized close to the yield point of the material, thus the additional
stresses induced by the jet noise could easily produce failure of
the tanks. Since the static:design of the tanks is so marginal, it
is necessary to know how much additional dynamic stress is induced
by way of the jet noise. The payloads are connected through attach-
ments to the missile casing. Thus violent vibrations of the shell
can result in violent motions of the payload unless enough is known
about the vibration environment so that proper mounting of payloads
can be achieved.

A limited amount of test data exists on response of the missile skin
due to jet noise, but for the most part only theoretical predictions
based on simplified theories™’'“ are readily available. This theoreti-
cal study has been divided into two main phases. The first phase
which is being presented here consists of the computation of the mis- -
sile shell response due to random lgading. The second phase will be
devoted to computation of the payload response using the shell mo-
tions as the input accelerations to the payload.

In predicting the response of shell structures one must be careful to
consider all the important modes. In thin cylindrical shells the
complication of the modal pattern is by no means a criterion for pre-
dicting the predominant modes as will be seen later in the report.
For example, it is possible in thin cylindrical shells that for cer-
tain low frequencies the mode corresponding to twenty full waves -
around the periphery may be more important than the one correspond-
ing‘to five. Each shell must be calculated separately and no gen-
eral rule can be stated regarding the predominance of certain modes.

A frequency spectrum must first be computed to obtain the most important
modes at given frequencies. The response functions can then be

computed and the random response built up from these. Hand computa-
tions can be carried only so far with these complicated systems. It

"A. Powell, "On the Response of Structures to Random Pressures and
to Jet Noise in Particular," Random Vibration, edited by S. Cran-
dall, John Wiley and Sons, Inc., 1958, p. 187.

2'I. Dyer, "Estimation of Sound-Induced Missile Vibrations," Ibid,
p. 231,



is neither efficient nor accurate to indulge in attempts to derive
general formulas for the response when computer programs will determine
response functions in fractions of a second. The computer programs
must be developed which can be readily used by those involved in the
dynamics of missiles. It is the purpose of this report to outline the
theory for obtaining the frequency spectrum and response functions and
then indicate how the programs can be used by those who are inter-

- ested. The theory will then be worked out for part of the Saturn
LOX tank and the results will be compared with tests run at the Mar-
shall Space Flight Center.

II. Basic Equations
A. Response functions

For isotropic unstiffened pressurlzed shells containing fluid the
equations of motion can be written®
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-2




If the shell is assumed to have freely supported ends then the modal
functions can be discribed by the set of displacements

' wt
Un = Arrn Cr " Comep @
[ . ! [2]
Vo = Borrn A ’”‘—:5—’-‘%4«\60 ZL'NZ-
Ay ® o, @™ B e @

where the nomenclature is given in the list of symbols.

These modal functions are very realistic for thin shells which are
stiffened by rings. These functions describe the displacements be=
tween the rings assuming the rings to be rigid supports for the very
thin shell. If the internal fluid pressure can be represented by
the pressure that would be induced if the shell were extended indef-
initely in both directions then the eguations for the response func-
tions derived in a previous reference” can be applied directly.

Consider first the stationary response to a simple harmonic function
applied normal to the shell (in the same fashion as Crandall and
Yildiz™ for beams)

LN* '
Fle,d ) = €7 conngf e " GE [3]
The response will be the solution to the following set of simultan-
eous algebraic equations

/4’“"‘”[&"*‘:6"] + Bow [4;17 + C‘Ww [4&3] =0
A LQZ:J + LBon [Qn.*l:é:.a.j + G [6931_7:0
Am. [d3,] + B [Gs,.] + Connn [433-& é33]= alg:uuj

[4]

where

3. . . , . .
J. E. Greenspon, "Vibrations of Thick and Thin Cylindrical Shells

Surrounded by Water," J G Engineering Research Associates, Balti-
more, Maryland, Contract No. Nonr - 2733(00), Tech. Rep. No. 4,
Sept. 1960 (Sponsored by Office of Naval Research)

"S. H. Crandall and A. Yildiz, "Random Vibration of Beams," ASME
Paper No. 61-WA-149,
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For explanations of the impedances associated with the internal and
external fluid ( ;(~mvv:3 e A eb‘vhve ) the reader is referred

3
to a previous reference.

The stationary response can be written

e
UG, )= Hylomym o) @7 Coa™ G connef
VOLE) = Har () €5YF in Bl g (5]
W h )T o () @ B0l 25 nngy

H. =/4‘st~ y FI\J':B»‘» J /'/‘N':cw»a.
The //’s are known as the displacement transfer functions for lateral
loading on the shell. These functions can be used for response due
Lo lateral random loading. Similar response functions can be written
for longitudinal and tangential loading.

The lateral loading on the shell can be expanded into the Fourier

f/x ft)= Z; chmft)dm%”‘cd; nef

VAt MO

where f»v\ (L) = 77’,! / ﬁ((l ‘f)'d“‘"'\' -%—C/A ﬂ:/d/)&c/#

Frequencies

[6]

The frequency spectrum is obtained from the frequency equation

Ay, ) ‘Z3
Ay Z A3 =0 [7]
a.?l A3 433"‘)61—3"
The values of ¢) which satisfy the above determinant for a given
A, ", 1) % , %~ are the frequencies, Wy, of the shell
for the glven mode shape described by .A 2~ . The determinant

will have three roots for each mode shape, usually for practical
applications the lowest root will be the only one of significance.

Arnold and Warburton5 have derived an analogous frequency equation
using several simplifying assumptions. In essence they use the same
displacement functions but employ Timoshenko's expressions for the
strains® instead of Flugge's. It has been shown that the Arnold-

5.
R. N. Arnold and G. B. Warburton, Proc. Roy. Soc. A, Vol. 197, 1949,

p. 238.

"S. Timoshenko, “The Theory of Plates and Shells," McGraw Hill Book
Co., Inc., 1940, p. 439.
5=



. . . 7 .
Warburton theory is quite accurate even for thicker shells. Thelr
frequency equation is (unpressurized shell)

3

Nl nat+rr -k =o
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Effect of Internal Pressure

There are a number of papers which discuss the effects of internal and
external pressure on the frequencies of vibration of thin shells.

Among the more extensive studies is that of Fung, Sechler, and Kaplan
which also contains a brief summary of some of the other important
papers on pressurized shells. It can be shown however, that if one
examines the secular determinant for free vibrations of freely supported
pressurized shells the effect of internal or external pressure can
immediately be written down without any further simplifications of the
theory. To demonstrate this, the displacement expressions for Sreely
supported ends are substituted into the Flugge shell equations;

7.

J. E. Greenspon, J. Acoust. Soc. Am., 32, 571-578 (1960).
8.

9

Y. C. Fung, E. E. Sechler, A. Kaplan, J. Aero. Sci., 24, 650-660 (1960).
‘W. Flugge, "Stresses in Shells," Springer-Verlag, 1960, p. 423.
-6-




there results
A%w[/\ ? /:_ B /2a L)‘fl%i—fz./\ﬂ"’ 6‘*‘"‘* [—- _/';.-9/\%]
+ C’mn[-)»;-fi::(,\ SARELY »)-g.4] =0
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[9]

Aowa [PA= 2 (A% Bon2) g A [ 48[+ 52 0 g ]

L
+ (’%w//,cl-‘;f:,(/\ T 2a a2 e) ~gm =74 _7 =0

In almost all practical cases &, , F2 << 1) < / . Therefore
all terms containing f, and » can be neglected except those in the
C bracket of the third equation above. However if we only neglect

the ?n sy Fa terms in the off diagonal coefficients, the dia-
gonal coefficients can be written
= - —_— 2 -_— 2
A, - 4L 5 Cfrqy = L 5 (?33 - [10]
where X
I - = 2 >
_ﬂ— ?-, = ?2 A [ll]

Thus the natural frequency parameter of the pressurized shell is
— r g AT
- / +~ @l%— =
~ L \/7 =7

where (L is merely the eigenvalue of the unpressurized shell. This
result is quite general and will hold for shells of appreciable thick-
ness since the Flugge and Arnold-Warburton equations do hold for such
shells.7 Equation [12] can also be shown to hold in the case of some
anisotropic shells.

[12]

-7=



The results of equation [1l2] are in variance with those of Baron-
Bleichl® for n=l; however their results approach the values predicted
by “this theory for larger n. According to [12] an internal pressure
will always- give an increase in natural frequency and an external
pressure will always résult in a decrease no matter what mode is con-
sidered. Furthermore, the effects of internal pressure will only be
felt for the n=0 mode if A is fairly large. The formula of Fung et.
a18 also predicts the exact pressure effect as [12]. This result is
however more general than the frequency equatlon offered by these

"1nvestlgators.

Random loadlng

By a straight forward extension of the Crandall-Yildiz analysis for
beams™ the lateral ‘displacement of the shell can be written

w2, f )= sz‘“wc“"qﬂﬁﬁ.,(a)j (e, £-8) B

M) Amzg

(13]
where ngpls the lateral deflection due to a unit impulse at t=0.

If the load is assumed to have a known spatial distribution ?Kz,:ﬂ)

-and-a random distribution in time £(¢¢) , then the displacement at

point % ¢/ can be written

M‘(z d,t)= ZZ‘W”“’M%://J‘(&)Z (v om, -8 ) A5

[,U/ Gre ) 2o Tamae,adw/c/] o

Now let 2,°%T
ArnnzacinBcmrnd, 5 [ |3 50 s "Prtmrddudy (15

Then the deflection at %, q/ as a function of time will be

M CE) Z ZAMM/:‘/M%W/'M w,2-8)d 8 [16]

M= g _

From this point on all the well known theoremsllfor random loading
of single degree of freedom systems can be applied to each term of
the above series. In particular the power spectral density of the
response-&@r can be wrltten

S () = ZZA,M (u)//-/ (Mmu)/ [17]

mz, M EQ

10.
11.

H. H. Bleich and M. L. Baron, J. Appl. Mech, 21, 167-177, 1954.

S. Crandall, "sStatistical Properties of Response to Random Vibra-
tion; " Random Vibration, John Wiley and Sons, Inc., 1958, p. 77.
-8-




where ~s;¢ﬁu) is the power spectrum of the load.

The power spectra of the velocity and acceleration follow directly
by simply multiplying by w?* and &u4respectively. The power
spectra of the longitudinal and tangential response as well as the
stresses is obtained by using the appropriate A7

Electronic computer programs

An electronic computer program has been developed for calculating

"the transfer functions of U, A, aJ” and the longitudinal

and tangential stresses at the surface of the cylinder. A compu-
ter program has also been setup for the natural frequencies of
unpressurized shells by use of the Arnold-Warburton equations.
The pressurized shell. frequencies are obtained by formula [12].

IIT. Illustrative example - Saturn Lox Tank

A.

General description

The Marshall Space Flight Center has reported results of static
tests on the Saturn mis&ile.l2 The test tank is a ring stiffened
structure, however the rings are assumed stiff enough so that
they act essentially as supports for the skin between them. The
test tank is one of a series of peripheral tanks in the Saturn
vehicle and therefore the entire tank is not exposed to the jet
noise. The acoustically shaded portion of the tank is as shown
in Figure 1. It will be assumed that the loading is random in
time but constant in space for the exposed portion of the shell
and zero for the shaded portion. The sound spectrum was extrapo-
lated from measurements by Farrow et al. This load spectrum

at the test section is as shown in Figure 2.

Natural frequencies of the test shell

The frequencies of the unpressurized and pressurized test section
were computed from the Arnold-Warburton frequency equation5 and
formula [12] given in this report. These frequency spectra are
shown in Figures 3 and 4. One should note the great effect of
pressure for large values of n. It is apparent from the frequency
curves that the important modes over a given frequency band cannot
arbitrarily be selected without careful study of the spectrum.
Modes with large values of n may be very important at low frequenr:
cies. Pressure has such a large effect that modes which might

12. .
J. H. Farrow, R. E. Jewell, and G. A. Wilhold, "Structural Re-

sponse to the Noise Input of the Saturn Engines," Symposium on
Structural Dynamics of High Speed Flight, April 24-26, 1961,
p. 710.

-9-



be insignificant at a given frequency in an unpressurized shell may
be predominant at that frequency in the actual pressurized tank.

C. Comparisoh between theoretical and experimental response

The aéceleration pickup was located 11 inches from the lower ring as
shown in Figure 1. The response functions were computed at this
point. Assuming ¢ﬂ=%E (see! Fig. 1), the value of Ap.s is

' W\ﬂﬂ'z/

A = 55, 2

(The pickup is located at ¢ =o )
Since the pressure was assumed constant over the length of the
shell and constant over the range —¢ ~» +¢f (f = 7/2), only

odd m and odd n modes are excited. No axially symmetric motions
(n=0) will be excited by this load distribution.

The response was computed for 300, 400, 500, 600, 700, 800 cps. The
modes considered at each frequency are given below in Table 1.

Table 1

Predominant Modes

Frequency Modes Used in Calculations
- . m n
300 cps 1 1,3,5,7
400 1 1,3,5,7,9,11
500 1 1,3,13
600 1 1,3,5,15
700 3 9,11,13
800 1 1
3 9,11,13

The following input parameters were used in the calculations:

X=.0026 , /=.3, S=.0063, 4 =.00/4, 4, <0007,
Crte, =10, Crpp = /0, C‘/CP =062, Fo o, =.000s, Lifp, = 0008

The damping constant, S=,0083 was obtained from the experimental
results of Fung and Sechler® on aluminum shells.

-10-




The experimental and theoretical acceleration spectra for a band-
width of 10 cps are shown in Figure 5. The experimental results

show a minor peak at about 150 cps whereas the theory predicts the
lowest frequency at about 340 cps (see Fig. 4). This latter frequency
corresponds to the first major peak shown in the experimental response

curve. The low peak at 150 cps is probably a mode of the entire
stiffened tank.

-11-



e
Back -
Half 15
Acoustica //7
Shadecd/
ofwe

A cce/erome*e’/ Jw//
l‘/‘
__\\\\ / /
— )
] .’/"'//

RRtane DR TTRY AR

/C/? /. Test She//

-]




cod

oo,

Ex&*uwﬂwf pro7 7 m.m\

sd> ¢ xu:u:mu.m

o099

Oost

oo¥

oog

oo

o/

7

L

L

1

% S
(etd/y) (S

£)
rd%

4

82"




16 00—

/400

1200

P
8
o

S
o

()

o

o
T

F;'e?bv ¢ﬂC7 , (a4

§

200 L

F7j,3 T/)eoref/ca/ Ff_"¢7uenc] ~5;Dec7"rum

Um,oressw-/ zecf
-l4-

3¢



2000

/8oot-

/600

/4 o0[

/1200

looo

F;@guanc], cps
&
o

Goo

4oo}

2oof

-

i i L 1

)°d 12 /6 20 24 2%

7

/579.4 7/7€Of€7L/Ca/ H’z7uenc S/Oecf?um

PressuriZec!
«15-

3Z

36



Aho\uo\n 4*\?30:“\@\
h\uh\.m.. poRZiansssiy *Q\x\m
lL.C.ucC\\N > p-o N&QNCPN *.Q QOW\\GQ‘SQb S mm
sd> \\uc&lmuk.u\
oog Oo/ 009 oes oop oog ooz oo/

T T -1 Y T T T 7

v

Je2Lf2102y [ v

\Gl\ 2 :\\.\&XM

o/




(04]

Addendum to Report

(Page numbers refer to original report)

In equation [9] each bracket along the diagonal should have
a -_N* term in it; thus the Aw“ bracket in the
first equation should read (also changing signs of ? and Z;.
to represent positive internal pressure)

WW/:\‘L 1=y :-(*./z ‘_)+5'4~ 472_ —_n ]
the B%“ bracket in the second equation should read
B 2, )=y, 2 -ﬁ“"' 3 a * =7
o) 2+ 5E /+3ﬁ;-,)+f,m +guAT-" /

and the C;h“ bracket in the third equation should read

Con [1+ 2 ,_(/\47‘ 2A%m o 2n by )+, mrg A Y]
In eq. [9] change the signs of all terms involving Y and £

the heading "C" should read "C. Random ftime loading with
assumed space distribution"

The paragraph after eq. [16] should read

From thls]Point on, all the well known theorems for random
loadlng can be applied to the above series. In particular
if cross product terms are neglected the power spectral den-
sity of the response can be written

Under egquation [17] write

If cross product terms are included
oD o0 o

Sirle) = ZZ 22 v Ay

M) m=o P2 f-a

The heading "III" should read

/&{)/Awa%~n u)/[HLfGDQAQ/
e cr (B, “'ﬂff) [/74]

ITI. Illustrative example - Saturn Lox Tank with assumed
space distribution

The statement immediately before Table 1 should read

The response was computed for 300, 400, 500, 600, 700, 800 cps
neglecting cross product terms. The modes considered at each
frequency are given below in Table 1



p. 11, Add the following sections to the report
IV.General Random Loading
A, Basic equations

Starting with eq. [13] let t-0=u

Yol
,w‘(ogce ¢) =Z Z ar %_;T‘%’*‘¢/D§mm(““){*’/”‘a“J“)‘/“

M) Nep

0d =0 ) [18]

= M?—LM%¥/{“I‘/WIMJM)/H
M) nE0 -2-.4\ 1 m
2 [ A0, ot

The correlation is +T
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b
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The power spectral density of the deflection 4v~will be

“ur Gyl 00 = ZZ 2 Z/‘:‘“?‘t%?’f‘“# cngd,

L)

r ’— -t i,
_;[e ’?W("‘)'b“,)dhl
_‘/f"'”m/w/ﬁ’,,m)dub

-l

2
nw[ /7 / &0, L g e ﬁ}’i%»r,‘aﬂ//f y,dfsdy,

where Sf. is the power spectrum of the load

(20]
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Assume can be written

5
SFE 0, E 0, w) = S0 AGF-£) B0 -1 )

[21]

/r.,,ce,w) ZEZ o TG PTE

=7 e~ g
//‘/w(w, ,w)///qw/)ﬁf, W)/@/ﬁwn'ﬂ/’,)

w[} m)][////(f-?)&fz - ) e @mmmf

J}"d/f 4/7 47,,

[22]

where '  and £9 are the phase angles associated with
the response functions of these modes.

The average power spectral density is found by integrating over
the area of the cylinder. Thus

(:S;fnvz =‘:EE;:§'f%i'i:"’)/’/*vr(3~u*x,boJ/ -
2,
////‘Vf’-f)d/,‘ ,)w"%ﬁmﬁﬁf»m«7,m'»7 [23]
/fa/f Ay, dy,

B. Application to Saturn Lox Tank

If the correlation function is assumed to be unity in both the
circumferential and longitudinal directions and if the correla-
tion. is zero over the acoustically shaded area,

the power spec-
tral density of the deflection is @d} =0

.w-ﬂr,) uu) ZZZZ‘M“N’MW" 7| Hor (wm, v)//%/r,? w)/

Cﬂaﬂam“--&%7n)ﬂ~:;iJr4

[24]



The power spectral density of the acceleration is determined by
multiplying the above equation by &% . This result is identi-

cal to the result obtained in Section C of the report for assumed
space distributions.

Fig. 5a shows theoretical-experimental comparisons using eq. [17]
of section C and using eq. [24]. The results indicate that pro-
duct terms do have significance in this case. There are some
serious questions concerning the use of unit correlations since
experimental evidence has shown that the space correlations in
actual missiles in flight are much more complex.The results do
indicate, however, that order of magnitude results can be obtained
from these simplifying assumptions.




(sd>0/= <*B§\ccu%\
u\etm

M\U{W poZranssauy hy
—fUdwis2dxg fpwo N&owrmh u\.O COW\\GQ:\QQb w..w.m,mu\

sdy ° \u(uSMuL.U\

ooy oo/ Qoyg ooy oop oog ooz oo/ (]
T T T Y 1 L3 A 1
v
©
q -
0]
v v
v
!IIlIlIl.II\ ]
q -
(o}
[¥2]°63 - joogr2034s o ]
[cq 97 -/o2y21024L vV

[epuz el -7

o/



